GLUT1 deficiency syndrome into adulthood

Willemijn Leen Nijmegen, the Netherlands

No conflicts of interest

Broad phenotypic spectrum

* Classical, complex phenotype:

- * Intellectual disabillity
- * Epilepsy
- * Movement disorder (spasticity, ataxia, dystonia)
- * Other (often milder) phenotypes, such as:
 - * Generalized epilepsy
 - * Paroxysmal exertion-induced dystonia

Course of GLUT1DS

Initial assumption:

- Stabile neurological disorder
- Treatment with ketogenic diet:
 - Start as soon as possible
 - Continue into adolescence

But...:

- What do we actually know about the disease course?
- Disorder is now known for 2.5 decades

Systematic review (2013)

Pubmed searchInclusion: all GLUT1DS patients aged ≥18 years

56 articles:

- •194 GLUT1DS patients:
 - 91 adults

Classification into 3 phenotypes

- Classical, complex
 Intellectual disability + epilepsy or movement disorder
- * Epilepsy dominant
 Epilepsy (+ paroxysmal movement disorder)
- * Movement disorder dominant Isolated movement disorder

Results of systematic review

	Total <i>N=91</i>	Complex phenotype <i>N=33 (36%)</i>	Epilepsy-dominant <i>N=28 (31%)</i>	Movement disorder- dominant <i>N=27 (30%)</i>
Age (mean±SD)	37y±15	29y±10	39y±14	41y±14
CSF glucose (mmol/L)	1.4-2.8	1.4-2.3	2.1-2.8	2.3-2.7
Intellectual disability	36 %	100 %	-	-
Epilepsy (ever)	56 %	Reduction of epi	lepsy during life	-
Epilepsy (current)	22 %	30 %	36 %	-
Epilepsy (onset)	2m – 35y	2m – 17y (58% <10y)	0 – 34 y (57% < 10y)	-
Movement disorder	79 %	82 %	64 %	100 %
Paroxysmal exertion induced dyskinesia	68 %	64 %	57 %	93 %
(PED)				
PED (onset)	1y-30y (44 % <10y; 34% 10-20y)	2y-20y (70 %<10y)	5y-30y (31% <10y; 38% 10-20y)	1y-19y

Cohort study

- Nijmegen, the Netherlands
- Inclusion:
 - GLUT1DS patients aged ≥18 years
 - Classical, complex phenotype
 - Follow-up from childhood

Cohort study

7 patientsClassical, complex phenotype*SLC2A1* mutationGLUT1DS CSF profile

Results of cohort study

	Total		
	N=7		
Age (range)	24-44 y		
CSF glucose (mmol/L) CSF/blood glucose	1.9 - 2.1 0.3 - 0.58		
Intellectual disability	Mild to severe		
Epilepsy	6 out of 7		
Epilepsy (onset)	3m - 4y		
Seizures (current)	2 out of 7		
Movement disorder	100 %		
Paroxysmal exertion induced dyskinesia (PED)	4 out of 7 (all ambulatory pts)		
PED (onset)	10-20y		

Patiënt	1	2	3	4	5	6	7
Sex; age	F; 23y	F; 24y	F; 24-4	4 years	F; 31y	M; 33y	M; 44y
Intellectual disability	Mild	Mild	Aild to mo	Moderate derate-sev	Moderate ere	Moderate- severe	Mild
Language	Full sentence		Single v	vords to no	ormal		Normal
Speech	Mild dysarthria	Ç	Severe dy	sarthria to	normal	aysanına	Normal
Education	Special needs	Spec		to vocatio	nal school	Special	Vocational school
Independence	Ass	sisted livir	ng with 24	/7 care to t	otally indep	pendent	endent
Mobility	Wheelcheir for long distances	Wheelc	hairboun wheelchiar during PED	d to unassi	sted walkin		Unassisted walking

Current treatment

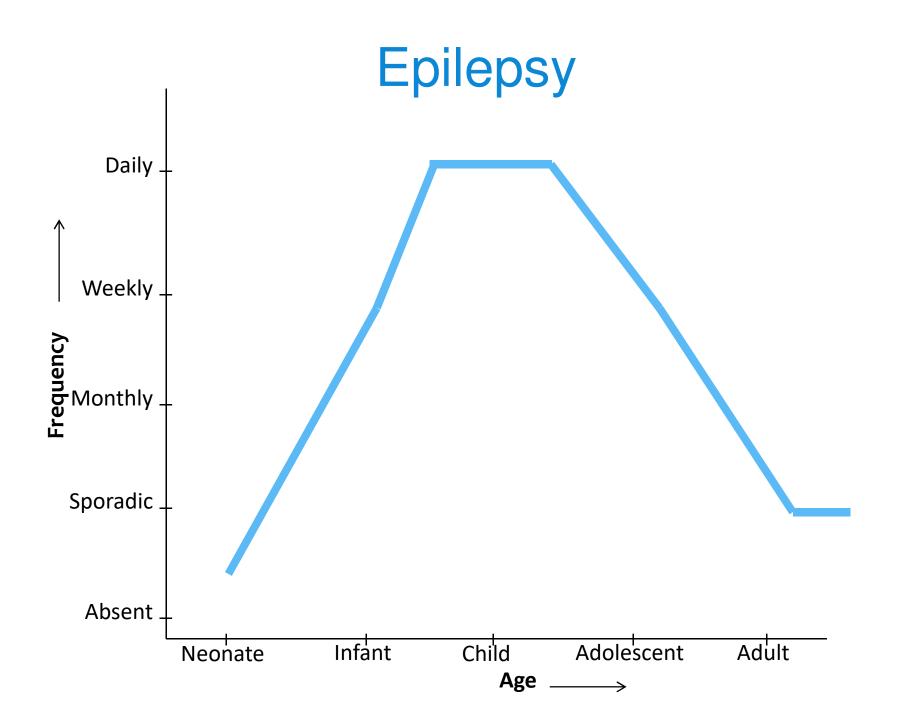
Ketogenic diet:

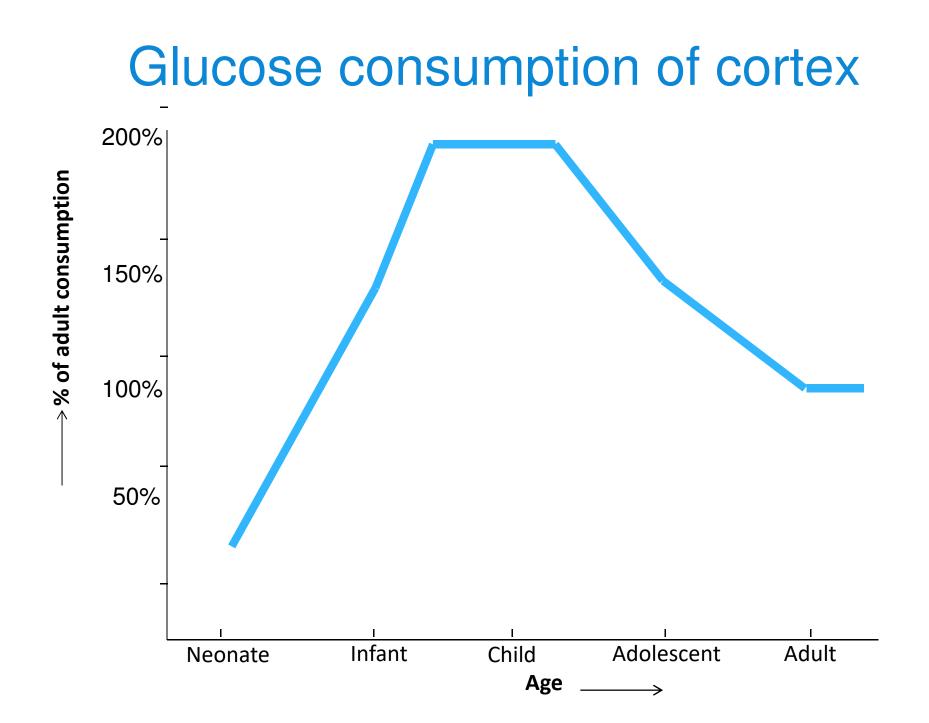
• $\tilde{n} = 1/7$ (since the age of 8 yrs)

Modified Atkins diet:

- n = 4/7 (since the age of 20-26 yrs)
 - Indication: epilepsy(1); movement disorder(3)

Anti-epileptic drugs:


• n = 3/7 (seizures after drug reduction in 2)


Other: Oxcarbazepine for PED (n = 3)Acetazolamide for PED (n = 2)

Seizure frequency decreases during adolescence.

Conclusion (2)

Onset / worsening of paroxysmal exertion induced dyskinesia during adolescence

Take home message (1)

Classical, complex GLUT1DS:

- Large individual differences
- Intellectual disability appears to be stabile
- Change of dominating symtom with age:
 - Epilepsy most disabling symptom during childhood
 - PED occurs or worsens during adolescence

Take home message (2)

Treatment of adolescents and adults with GLUT1DS:

- Modified Atkins diet is good alternative
- If possible, try to reduce anti-epileptic drugs
- Oxcarbazepine and acetazolamide can be effective for PED